Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 2(13), p. 1178, 2023

DOI: 10.3390/app13021178

Links

Tools

Export citation

Search in Google Scholar

Deep Transfer Learning-Based Animal Face Identification Model Empowered with Vision-Based Hybrid Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The importance of accurate livestock identification for the success of modern livestock industries cannot be overstated as it is essential for a variety of purposes, including the traceability of animals for food safety, disease control, the prevention of false livestock insurance claims, and breeding programs. Biometric identification technologies, such as thumbprint recognition, facial feature recognition, and retina pattern recognition, have been traditionally used for human identification but are now being explored for animal identification as well. Muzzle patterns, which are unique to each animal, have shown promising results as a primary biometric feature for identification in recent studies. Muzzle pattern image scanning is a widely used method in biometric identification, but there is a need to improve the efficiency of real-time image capture and identification. This study presents a novel identification approach using a state-of-the-art object detector, Yolo (v7), to automate the identification process. The proposed system consists of three stages: detection of the animal’s face and muzzle, extraction of muzzle pattern features using the SIFT algorithm and identification of the animal using the FLANN algorithm if the extracted features match those previously registered in the system. The Yolo (v7) object detector has mean average precision of 99.5% and 99.7% for face and muzzle point detection, respectively. The proposed system demonstrates the capability to accurately recognize animals using the FLANN algorithm and has the potential to be used for a range of applications, including animal security and health concerns, as well as livestock insurance. In conclusion, this study presents a promising approach for the real-time identification of livestock animals using muzzle patterns via a combination of automated detection and feature extraction algorithms.