Published in

MDPI, Molecules, 2(28), p. 896, 2023

DOI: 10.3390/molecules28020896

Links

Tools

Export citation

Search in Google Scholar

New Copper(II)-L-Dipeptide-Bathophenanthroline Complexes as Potential Anticancer Agents—Synthesis, Characterization and Cytotoxicity Studies—And Comparative DNA-Binding Study of Related Phen Complexes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Searching for new copper compounds which may be useful as antitumor drugs, a series of new [Cu(L-dipeptide)(batho)] (batho:4,7-diphenyl-1,10-phenanthroline, L-dipeptide: Gly-Val, Gly-Phe, Ala-Gly, Ala-Ala, Ala-Phe, Phe-Ala, Phe-Val and Phe-Phe) complexes were synthesized and characterized. To interpret the experimental IR spectra, [Cu(ala-gly)(batho)] was modelled in the gas phase using DFT at the B3LYP/LANL2DZ level of theory and the calculated vibrational frequencies were analyzed. Solid-state characterization is in agreement with pentacoordinate complexes of the general formula [Cu(L-dipeptide)(batho)]·x solvent, similar to other [Cu(L-dipeptide)(diimine)] complexes. In solution, the major species are heteroleptic, as in the solid state. The mode of binding to the DNA was evaluated by different techniques, to understand the role of the diimine and the dipeptide. To this end, studies were also performed with complexes [CuCl2(diimine)], [Cu(L-dipeptide)(diimine)] and free diimines, with phenanthroline, neocuproine and 3,4,7,8-tetramethyl-phenanthroline. The cytotoxicity of the complexes was determined on human cancer cell lines MDA-MB-231, MCF-7 (breast, the first triple negative), and A549 (lung epithelial) and non-tumor cell lines MRC-5 (lung) and MCF-10A (breast). [Cu(L-dipeptide)(batho)] complexes are highly cytotoxic as compared to cisplatin and [Cu(L-dipeptide)(phenanthroline)] complexes, being potential candidates to study their in vivo activity in the treatments of aggressive tumors for which there is no curative pharmacological treatment.