Published in

American Physical Society, Physical review B, 1(90)

DOI: 10.1103/physrevb.90.014202

Links

Tools

Export citation

Search in Google Scholar

Charge-density correlations in pressurized liquid lithium calculated usingab initiomolecular dynamics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Static and dynamic autocorrelations of charge density, composed of positive point ions and instantaneous distribution of electron density, are studied in liquid Li in a pressure range from ambient to 186 GPa using ab initio molecular dynamics simulations. It is shown analytically that the long-wavelength limit of the charge-charge static structure factor SQQ(k) of liquid metals is proportional to k4. Time-dependent charge-charge correlations in liquid Li at low pressures show identical relaxation as the density-density time correlation functions, in complete agreement with the linear response theory, whereas at extreme pressures we observed different relaxation of the charge and density autocorrelations. The static and dynamic properties of a part of electron density, that corresponds to the nonspherical distribution around ions, are discussed. © 2014 American Physical Society.