Published in

Springer Nature [academic journals on], Translational Psychiatry, 1(12), 2022

DOI: 10.1038/s41398-022-01919-9



Export citation

Search in Google Scholar

The role of ADHD genetic risk in mid-to-late life somatic health conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO


AbstractGrowing evidence suggests that ADHD, an early onset neurodevelopmental disorder, is associated with poor somatic health in adulthood. However, the mechanisms underlying these associations are poorly understood. Here, we tested whether ADHD polygenic risk scores (PRS) are associated with mid-to-late life somatic health in a general population sample. Furthermore, we explored whether potential associations were moderated and mediated by life-course risk factors. We derived ADHD-PRS in 10,645 Swedish twins born between 1911 and 1958. Sixteen cardiometabolic, autoimmune/inflammatory, and neurological health conditions were evaluated using self-report (age range at measure 42–88 years) and clinical diagnoses defined by International Classification of Diseases codes in national registers. We estimated associations of ADHD-PRS with somatic outcomes using generalized estimating equations, and tested moderation and mediation of these associations by four life-course risk factors (education level, body mass index [BMI], tobacco use, alcohol misuse). Results showed that higher ADHD-PRS were associated with increased risk of seven somatic outcomes (heart failure, cerebro- and peripheral vascular disease, obesity, type 1 diabetes, rheumatoid arthritis, and migraine) with odds ratios ranging 1.07 to 1.20. We observed significant mediation effects by education, BMI, tobacco use, and alcohol misuse, primarily for associations of ADHD-PRS with cardiometabolic outcomes. No moderation effects survived multiple testing correction. Our findings suggests that higher ADHD genetic liability confers a modest risk increase for several somatic health problems in mid-to-late life, particularly in the cardiometabolic domain. These associations were observable in the general population, even in the absence of medical treatment for ADHD, and appear to be in part mediated by life-course risk factors.