Published in

American Association for the Advancement of Science, Science Advances, 4(9), 2023

DOI: 10.1126/sciadv.abq0110

Links

Tools

Export citation

Search in Google Scholar

North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δ 18 O sw ) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ 47 ) and oxygen isotope (δ 18 O c ) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)–based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher δ 18 O sw , which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming.