Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(520), p. 782-803, 2023

DOI: 10.1093/mnras/stad057

Links

Tools

Export citation

Search in Google Scholar

Empirical constraints on the nucleosynthesis of nitrogen

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We derive empirical constraints on the nucleosynthetic yields of nitrogen by incorporating N enrichment into our previously developed and empirically tuned multizone galactic chemical evolution model. We adopt a metallicity-independent (‘primary’) N yield from massive stars and a metallicity-dependent (‘secondary’) N yield from AGB stars. In our model, galactic radial zones do not evolve along the observed [N/O]–[O/H] relation, but first increase in [O/H] at roughly constant [N/O], then move upward in [N/O] via secondary N production. By t ≈ 5 Gyr, the model approaches an equilibrium [N/O]–[O/H] relation, which traces the radial oxygen gradient. Reproducing the [N/O]–[O/H] trend observed in extragalactic systems constrains the ratio of IMF-averaged N yields to the IMF-averaged O yield of core-collapse supernovae. We find good agreement if we adopt $y_\text{N}^\text{CC}/y_\text{O}^\text{CC}=0.024$ and $y_\text{N}^\text{AGB}/y_\text{O}^\text{CC} = 0.062(Z/Z_⊙)$. For the theoretical AGB yields we consider, simple stellar populations release half their N after only ∼250 Myr. Our model reproduces the [N/O]–[O/H] relation found for Milky Way stars in the APOGEE survey, and it reproduces (though imperfectly) the trends of stellar [N/O] with age and [O/Fe]. The metallicity-dependent yield plays the dominant role in shaping the gas-phase [N/O]–[O/H] relation, but the AGB time-delay is required to match the stellar age and [O/Fe] trends. If we add ∼40 per cent oscillations to the star formation rate, the model reproduces the scatter in the gas phase [N/O]–[O/H] relation observed in external galaxies by MaNGA. We discuss implications of our results for theoretical models of N production by massive stars and AGB stars.