Published in

American Astronomical Society, Astrophysical Journal, 1(960), p. 21, 2023

DOI: 10.3847/1538-4357/ad06ae

Links

Tools

Export citation

Search in Google Scholar

Gamma-Ray Burst Observations by the High-Energy Particle Detector on board the China Seismo-Electromagnetic Satellite between 2019 and 2021

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In this paper we report the detection of five strong gamma-ray bursts (GRBs) by the High-Energy Particle Detector (HEPD-01) mounted on board the China Seismo-Electromagnetic Satellite, operational since 2018 on a Sun-synchronous polar orbit at a ∼507 km altitude and 97° inclination. HEPD-01 was designed to detect high-energy electrons in the energy range 3–100 MeV, protons in the range 30–300 MeV, and light nuclei in the range 30–300 MeV n−1. Nonetheless, Monte Carlo simulations have shown HEPD-01 is sensitive to gamma-ray photons in the energy range 300 keV–50 MeV, even if with a moderate effective area above ∼5 MeV. A dedicated time correlation analysis between GRBs reported in literature and signals from a set of HEPD-01 trigger configuration masks has confirmed the anticipated detector sensitivity to high-energy photons. A comparison between the simultaneous time profiles of HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A, GRB200826B, and GRB211211A has shown a remarkable similarity, in spite of the different energy ranges. The high-energy response, with peak sensitivity at about 2 MeV, and moderate effective area of the detector in the actual flight configuration explain why these five GRBs, characterized by a fluence above ∼3 × 10−5 erg cm−2 in the energy interval 300 keV–50 MeV, have been detected.