Published in

MDPI, Nanomaterials, 17(13), p. 2484, 2023

DOI: 10.3390/nano13172484

Links

Tools

Export citation

Search in Google Scholar

Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this work, a simple catalyst-free physical vapor deposition method is optimized by adjusting source material pressure and evaporation time for the reliable obtaining of freestanding nanoribbons with thicknesses below 15 nm. The optimum synthesis temperature, time and pressure were determined for an increased yield of ultrathin Bi2Se3 nanoribbons with thicknesses of 8–15 nm. Physical and electrical characterization of the synthesized Bi2Se3 nanoribbons with thicknesses below 15 nm revealed no degradation of properties of the nanoribbons, as well as the absence of the contribution of trivial bulk charge carriers to the total conductance of the nanoribbons.