Published in

Oxford University Press, Journal of the Endocrine Society, Supplement_1(5), p. A652-A652, 2021

DOI: 10.1210/jendso/bvab048.1330

Links

Tools

Export citation

Search in Google Scholar

Novel Pituitary Organoid Model as Powerful Tool to Unravel Pituitary Stem Cell Biology Across Ages and Disease

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
White circle
Published version: policy unclear
Data provided by SHERPA/RoMEO

Abstract

Abstract The pituitary gland harbors a population of stem cells. However, role and regulation of these cells remain poorly understood. We recently established organoids from mouse pituitary as a novel research tool to explore pituitary stem cell biology (Cox et al., J. Endocrinol. 2019; 240:287-308). In general, organoids represent 3D in vitro cell configurations that develop and self-organize from (single) tissue stem cells under well-defined culture conditions that typically mirror the stem cell niche and/or embryogenic processes. Organoids reliably recapitulate key aspects of the original organ, including of its stem cell compartment. Moreover, organoids are long-term expandable while retaining these properties. We demonstrated that pituitary organoids originate from the resident (SOX2+) stem cells, largely phenocopy these cells and retain the stemness phenotype during expansive culture. Interestingly, the organoids show confident in vivo translatability and, when developed from transgenically damaged gland, recapitulate the activation status of the stem cells as observed in situ following injury. Now, we found that the organoids also mirror the stem cells’ phenotype and biology in physiological conditions in which the stem cell compartment is either activated or compromised. Organoids from the neonatal maturing pituitary reproduce phenotypical and functional aspects of its activated stem cells, whereas organoids from aging gland mimic the declined functional state of the stem cells in old pituitary. Interestingly, this functional decay was found to be reverted during organoid culture, indicating that the old pituitary stem cells retain intrinsic functionality but are in vivo restrained by an obstructive microenvironment, not present in the organoid culture. Indeed, using single-cell transcriptomics and in vivo analysis, we found that the aging pituitary suffers from a prevailing inflammatory state (inflammaging) which appears to raise the threshold for stem cell activation. Interestingly, comparison of young and old pituitary led us to the discovery of pituitary stem cell activators. Finally, we found that activated parameters of organoid formation are also observed when tumorigenesis takes place in the gland, again mimicking the in situ stem cell activation that is occurring in this perturbed, pathological condition. Taken together, we identified, and applied, our new pituitary organoid model as advanced and powerful tool to gain profound insight into pituitary stem cell behavior across life and disease, which is expected to eventually translate into restorative and rejuvenative tactics when pituitary function is compromised by damage or age. In this context, our single-cell transcriptome database has strong potential to unveil appealing targets.