Published in

MDPI, Lubricants, 2(11), p. 47, 2023

DOI: 10.3390/lubricants11020047

Links

Tools

Export citation

Search in Google Scholar

Enhanced Tribological Behaviour of Hybrid MoS2@Ti3C2 MXene as an Effective Anti-Friction Additive in Gasoline Engine Oil

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hybrid molybdenum disulfide (MoS2)-MXene (Ti3C2) was added as an additive in SAE 5W-40-based engine oil in an attempt to reduce interfacial friction between contact surfaces. It was found that the coefficient of friction (COF) and wear scar diameter (WSD) were reduced by 13.9% and 23.8%, respectively, with the addition of 0.05 wt.% MoS2-Ti3C2 compared to base engine oil due to the interlaminar shear susceptibility of MXene. However, we postulate that the high surface energy and presence of -OH, -O and -F functional groups on the surfaces limited the dispersibility and stability of MXene in base oil, while high activity of MoS2 nanoparticles due to large surface area and vigorous Brownian motion prompted fast settling of nanoparticles due to gravitational force. As such, in the present study, hybrid MoS2-Ti3C2 were amine-functionalized to attain stability in SAE 5W-40-based engine oil. Experimental findings indicate that amine-functionalized 0.05 wt.% MoS2-Ti3C2 exhibited higher COF and WSD, i.e., 12.8% and 12.3%, respectively, compared to base oil added with 0.05 wt.% unfunctionalized MoS2-Ti3C2. Similarly, Noack oil volatility was reduced by 24.6% compared to base oil, indicating reduced oil consumption rate, maximal fuel efficiency and enhanced engine performance for a longer duration.