Published in

Springer, Photochemical & Photobiological Sciences, 2(3), p. 217-225, 2004

DOI: 10.1039/b305225g

Links

Tools

Export citation

Search in Google Scholar

Fluorescence studies of the interaction of pyrenylmethyl tributylphosphonium bromide with double-strand polynucleotides

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interaction between pyren-1-ylmethyl tri-n-butylphosphonium bromide (PMTP), a water-soluble cationic pyrene derivative and the double-strand polynucleotides Poly[dA-dT], Poly[dA].Poly[dT], Poly[dG-dC] and Poly[dG]. Poly[dC] was studied using UV-Vis absorption and fluorescence spectroscopy. The PMTP probe interacts with polynucleotides through both weak and intercalative binding, evidenced through changes in the absorption spectrum (hypochromicity and red shift). The two binding types were distinguished using time-resolved fluorescence, as the intercalative environment differs from that of the surface. Thymine and cytosine are more efficient quenchers of PMTP situated on the surface because of the higher proton accessibility to this region. In contrast, adenine does not quench PMTP fluorescence, whereas guanine residues are always very efficient quenching sites. Therefore, through the use of spectroscopic techniques, it was possible to obtain information concerning the partition of PMTP in each form of binding. In the heteropolymers, Poly[dA-dT] and Poly[dG-dC], PMTP exhibits a significant preference for intercalation in AT sequences, while with GC, the intercalation is lower. In the homopolymers, Poly[dA].Poly[dT] and Poly[dG].Poly[dC], the main mechanism of interaction is weak binding, but some base preferences are elucidated. Additionally, Poly[dA].Poly[dT] can be distinguished from Poly[dA-dT] through a direct energy-transfer process between several bound PMTP molecules.