Published in

MDPI, International Journal of Environmental Research and Public Health, 3(20), p. 2508, 2023

DOI: 10.3390/ijerph20032508

Links

Tools

Export citation

Search in Google Scholar

Detailed Speciation of Semi-Volatile and Intermediate-Volatility Organic Compounds (S/IVOCs) in Marine Fuel Oils Using GC × GC-MS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ship emissions contribute substantial air pollutants when at berth. However, the complexity and diversity of the marine fuels utilized hinder our understanding and mapping of the characteristics of ship emissions. Herein, we applied GC × GC-MS to analyze the components of marine fuel oils. Owing to the high separation capacity of GC × GC-MS, 11 classes of organic compounds, including b-alkanes, alkenes, and cyclo-alkanes, which can hardly be resolved by traditional one-dimensional GC-MS, were detected. Significant differences are observed between light (-10# and 0#) and heavy (120# and 180#) fuels. Notably, -10# and 0# diesel fuels are more abundant in b-alkanes (44~49%), while in 120# and 180#, heavy fuels b-alkanes only account for 8%. Significant enhancement of naphthalene proportions is observed in heavy fuels (20%) compared to diesel fuels (2~3%). Hopanes are detected in all marine fuels and are especially abundant in heavy marine fuels. The volatility bins, one-dimensional volatility-based set (VBS), and two-dimensional VBS (volatility-polarity distributions) of marine fuel oils are investigated. Although IVOCs still take dominance (62–66%), the proportion of SVOCs in heavy marine fuels is largely enhanced, accounting for ~30% compared to 6~12% in diesel fuels. Furthermore, the SVOC/IVOC ratio could be applied to distinguish light and heavy marine fuel oils. The SVOC/IVOC ratios for -10# diesel fuel, 0# diesel fuel, 120# heavy marine fuel, and 180# heavy marine fuel are 0.085 ± 0.046, 0.168 ± 0.159, 0.504, and 0.439 ± 0.021, respectively. Our work provides detailed information on marine fuel compositions and could be further implemented in estimating organic emissions and secondary organic aerosol (SOA) formation from marine fuel storage and evaporation processes.