Published in

Wiley, Small, 43(17), 2021

DOI: 10.1002/smll.202101359

Links

Tools

Export citation

Search in Google Scholar

Stable and Efficient Blue‐Emitting CsPbBr<sub>3</sub> Nanoplatelets with Potassium Bromide Surface Passivation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractColloidal all‐inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full‐color all‐perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano‐structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide‐passivated (KBr‐passivated) blue‐emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo‐ and thermal‐stabilities. The enhancements are attributed to the formation of K‐Br bonding on the surface which suppresses ion migration and formation of Br‐vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all‐perovskite white light‐emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr‐passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.