Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Systems, 6(10), p. 225, 2022

DOI: 10.3390/systems10060225

Links

Tools

Export citation

Search in Google Scholar

Addressing Parameter Uncertainty in a Health Policy Simulation Model Using Monte Carlo Sensitivity Methods

Journal article published in 2022 by Wayne Wakeland ORCID, Jack Homer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present a practical guide and step-by-step flowchart for establishing uncertainty intervals for key model outcomes in a simulation model in the face of uncertain parameters. The process starts with Powell optimization to find a set of uncertain parameters (the optimum parameter set or OPS) that minimizes the model fitness error relative to historical data. Optimization also helps in refinement of parameter uncertainty ranges. Next, traditional Monte Carlo (TMC) randomization or Markov Chain Monte Carlo (MCMC) is used to create a sample of parameter sets that fit the reference behavior data nearly as well as the OPS. Under the TMC method, the entire parameter space is explored broadly with a large number of runs, and the results are sorted for selection of qualifying parameter sets (QPS) to ensure good fit and parameter distributions that are centrally located within the uncertainty ranges. In addition, the QPS outputs are graphed as sensitivity graphs or box-and-whisker plots for comparison with the historical data. Finally, alternative policies and scenarios are run against the OPS and all QPS, and uncertainty intervals are found for projected model outcomes. We illustrate the full parameter uncertainty approach with a (previously published) system dynamics model of the U.S. opioid epidemic, and demonstrate how it can enrich policy modeling results.