Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 15(129), 2021

DOI: 10.1063/5.0044865

Links

Tools

Export citation

Search in Google Scholar

Application of sparse grid combination techniques to low temperature plasmas Particle-In-Cell simulations. II. Electron drift instability in a Hall thruster

Journal article published in 2021 by L. Garrigues ORCID, B. Tezenas du Montcel ORCID, G. Fubiani ORCID, B. C. G. Reman
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Three-dimensional simulations of partially magnetized plasma are real challenges that actually limit the understanding of the discharge operations such as the role of kinetic instabilities using explicit Particle-In-Cell (PIC) schemes. The transition to high performance computing cannot overcome all the limits inherent to very high plasma densities and thin mesh sizes employed to avoid numerical heating. We have applied a recent method proposed in the literature [L. F. Ricketson and A. J. Cerfon, Plasma Phys. Controlled Fusion 59, 024002 (2017)] to model low temperature plasmas. This new approach, namely, the sparse grid combination technique, offers a gain in computational time by solving the problem on a reduced number of grid cells, hence allowing also the reduction of the total number of macroparticles in the system. We have modeled the example of the two-dimensional electron drift instability, which was extensively studied in the literature to explain the anomalous electron transport in a Hall thruster. Comparisons between standard and sparse grid PIC methods show an encouraging gain in the computational time with an acceptable level of error. This method offers a unique opportunity for future three-dimensional simulations of instabilities in partially magnetized low temperature plasmas.