Published in

Springer, Tree Genetics and Genomes, 2(19), 2023

DOI: 10.1007/s11295-023-01589-8

Links

Tools

Export citation

Search in Google Scholar

Genome-wide SNP discovery in native American and Hungarian Robinia pseudoacacia genotypes using next-generation double-digest restriction-site-associated DNA sequencing (ddRAD-Seq)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRobinia pseudoacacia L. (commonly known as black locust) is an economically and environmentally important plant, native to the eastern USA, and introduced into several European countries, including Hungary. An early successional leguminous tree, the black locust is characterized by tolerance to degraded sites, rapid growth rate, dense and rot-resistant wood, and heavy flowering. Due to its economic potential and environmental impact, the historic Hungarian breeding strategy targeted not only increased wood production but also in wood and honey-production quality. However, because many important features of the species are under polygenic control, genome-wide genetic data provided by high-throughput sequencing technology could make possible the identification of gene variants with identifiable functional effects on complex traits. Furthermore, the evaluation of the breeding efforts carried out so far would be also achievable, by comparing bred/selected genotypes with those from the original habitat. This paper provides a genomic dataset with highly variable SNP markers from native American and Hungarian Robinia pseudoacacia L. individuals. These SNP loci can be used to assess genetic differentiation, and to detect signatures of polygenic determination of economically important traits, providing a basis for further research into this species.