Published in

Lippincott, Williams & Wilkins, Journal of Clinical Neurophysiology, 2(40), p. 151-159, 2021

DOI: 10.1097/wnp.0000000000000858

Links

Tools

Export citation

Search in Google Scholar

Machine Learning to Classify Relative Seizure Frequency From Chronic Electrocorticography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purpose: Brain responsive neurostimulation (NeuroPace) treats patients with refractory focal epilepsy and provides chronic electrocorticography (ECoG). We explored how machine learning algorithms applied to interictal ECoG could assess clinical response to changes in neurostimulation parameters. Methods: We identified five responsive neurostimulation patients each with ≥200 continuous days of stable medication and detection settings (median, 358 days per patient). For each patient, interictal ECoG segments for each month were labeled as “high” or “low” to represent relatively high or low long-episode (i.e., seizure) count compared with the median monthly long-episode count. Power from six conventional frequency bands from four responsive neurostimulation channels were extracted as features. For each patient, five machine learning algorithms were trained on 80% of ECoG, then tested on the remaining 20%. Classifiers were scored by the area-under-the-receiver-operating-characteristic curve. We explored how individual circadian cycles of seizure activity could inform classifier building. Results: Support vector machine or gradient boosting models achieved the best performance, ranging from 0.705 (fair) to 0.892 (excellent) across patients. High gamma power was the most important feature, tending to decrease during low-seizure-frequency epochs. For two subjects, training on ECoG recorded during the circadian ictal peak resulted in comparable model performance, despite less data used. Conclusions: Machine learning analysis on retrospective background ECoG can classify relative seizure frequency for an individual patient. High gamma power was the most informative, whereas individual circadian patterns of seizure activity can guide model building. Machine learning classifiers built on interictal ECoG may guide stimulation programming.