Published in

Wiley, Advanced Energy Materials, 42(11), 2021

DOI: 10.1002/aenm.202102169

Links

Tools

Export citation

Search in Google Scholar

Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Non‐Halide Engineering

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe realization of highly efficient perovskite solar cells (PSCs) in ambient air is considered to be advantageous for low‐cost commercial manufacturing. However, it is fundamentally difficult to achieve comparable device performance to that obtained in an inert atmosphere, especially when the ambient humidity is high. Here, an effective precursor engineering that simultaneously employs non‐halide lead acetate and lead thiocyanate lead sources for fabricating high‐quality methylammonium lead iodide perovskite films in ambient air with enhanced moisture tolerance, is reported. The presence of Ac and SCN ions not only enables the facile formation of homogeneous and highly crystalized perovskite films, but also directs the uniform growth of the crystals along the (110) direction. Accordingly, a 20.55% efficiency is demonstrated, one of the best results for air‐processed MAPbI3 PSCs, which is also the highest value achieved with non‐halide lead sources. Furthermore, the unencapsulated device shows fivefold prolonged air stability (3600 h) compared to the conventional PbI2‐based PSC. Together with the use of non‐toxic antisolvent, this strategy is fully compatible with ambient air operation and thus of great potential for practical applications.