Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Magnetochemistry, 7(9), p. 189, 2023

DOI: 10.3390/magnetochemistry9070189

Links

Tools

Export citation

Search in Google Scholar

Enhanced Energy Recovery in Magnetic Energy-Harvesting Shock Absorbers Using Soft Magnetic Materials

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In the automobile sector, energy recovery and sustainability are becoming more and more important, and energy-harvesting suspension systems (EHSAs) have a lot of promise to improve vehicle efficiency. This investigation expands on prior work that investigated the viability of an EHSA that uses permanent magnets and amorphous core coils. The performance of the proposed system is demonstrated and enhanced in the current study through the development and optimization of a prototype. A thorough testing of the prototype is performed to determine design improvements for boosting the system’s overall performance and to quantify the recovered energy. In previous work, a method was proposed to find the dependence of the magnetic flux with the relative position between the primary and secondary elements to obtain the optimal position for the system. This method is applied to optimize the energy harvesting coil by testing different configurations in terms of the placement and type of amorphous or nonamorphous core inside the energy harvesting coil. This is a crucial area of attention in order to maximize energy recovery while solving the low-frequency problem that suspension systems have (on the order of 10 Hz).