Published in

American Association for the Advancement of Science, Science, 6633(379), p. 707-712, 2023

DOI: 10.1126/science.adf4403

Links

Tools

Export citation

Search in Google Scholar

Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ammonia is a critical component in fertilizers, pharmaceuticals, and fine chemicals and is an ideal, carbon-free fuel. Recently, lithium-mediated nitrogen reduction has proven to be a promising route for electrochemical ammonia synthesis at ambient conditions. In this work, we report a continuous-flow electrolyzer equipped with 25–square centimeter–effective area gas diffusion electrodes wherein nitrogen reduction is coupled with hydrogen oxidation. We show that the classical catalyst platinum is not stable for hydrogen oxidation in the organic electrolyte, but a platinum-gold alloy lowers the anode potential and avoids the decremental decomposition of the organic electrolyte. At optimal operating conditions, we achieve, at 1 bar, a faradaic efficiency for ammonia production of up to 61 ± 1% and an energy efficiency of 13 ± 1% at a current density of −6 milliamperes per square centimeter.