Full text: Download
Aims. We explored multiple cardiometabolic patterns, including inflammatory and congestive pathways, in patients with heart failure (HF). Methods and Results. We enrolled 270 HF patients with reduced (<50%, HFrEF; n = 96) and preserved (≥50%, HFpEF; n = 174) ejection fraction. In HFpEF, glycated hemoglobin (Hb1Ac) seemed to be relevant in its relationship with inflammation as Hb1Ac positively correlated with high-sensitivity C-reactive protein (hs-CRP; Spearman’s rank correlation coefficient ρ = 0.180, p < 0.05). In HFrEF, we found a correlation between Hb1Ac and norepinephrine (ρ = 0.207, p < 0.05). In HFpEF, we found a positive correlation between Hb1Ac and congestion expressed as pulmonary B lines (ρ = 0.187, p < 0.05); the inverse correlation, although not significant, was found in HFrEF between Hb1Ac and N-terminal pro-B-type natriuretic peptide (ρ = 0.079) and between Hb1Ac and B lines (ρ = −0.051). In HFrEF, we found a positive correlation between E/e’ ratio and Hb1Ac (ρ = 0.203, p < 0.05) and a negative correlation between tricuspid annular systolic excursion (TAPSE)/echocardiographically measured systolic pulmonary artery pressure (sPAP) (TAPSE/sPAP ratio) (ρ = −0.205, p < 0.05) and Hb1Ac. In HFpEF, we found a negative correlation between TAPSE/sPAP ratio and uric acid (ρ = −0.216, p < 0.05). Conclusion. In HF patients, HFpEF and HFrEF phenotypes are characterized by different cardiometabolic indices related to distinct inflammatory and congestive pathways. Patients with HFpEF showed an important relationship between inflammatory and cardiometabolic parameters. Conversely, in HFrEF, there is a significant relationship between congestion and inflammation, while cardiometabolism appears not to influence inflammation, instead affecting sympathetic hyperactivation.