Dissemin is shutting down on January 1st, 2025

Published in

SSRN Electronic Journal, 2021

DOI: 10.2139/ssrn.3887799

American Association of Immunologists, The Journal of Immunology, 6(209), p. 1108-1117, 2022

DOI: 10.4049/jimmunol.2100854

Links

Tools

Export citation

Search in Google Scholar

CD5 Suppresses IL-15–Induced Proliferation of Human Memory CD8+ T Cells by Inhibiting mTOR Pathways

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract IL-15 induces the proliferation of memory CD8+ T cells as well as NK cells. The expression of CD5 inversely correlates with the IL-15 responsiveness of human memory CD8+ T cells. However, whether CD5 directly regulates IL-15–induced proliferation of human memory CD8+ T cells is unknown. In the current study, we demonstrate that human memory CD8+ T cells in advanced stages of differentiation respond to IL-15 better than human memory CD8+ T cells in stages of less differentiation. We also found that the expression level of CD5 is the best correlate for IL-15 hyporesponsiveness among human memory CD8+ T cells. Importantly, we found that IL-15–induced proliferation of human memory CD8+ T cells is significantly enhanced by blocking CD5 with Abs or knocking down CD5 expression using small interfering RNA, indicating that CD5 directly suppresses the IL-15–induced proliferation of human memory CD8+ T cells. We also found that CD5 inhibits activation of the mTOR pathway, which is required for IL-15–induced proliferation of human memory CD8+ T cells. Taken together, the results indicate that CD5 is not just a correlative marker for IL-15 hyporesponsiveness, but it also directly suppresses IL-15–induced proliferation of human memory CD8+ T cells by inhibiting mTOR pathways.