Dissemin is shutting down on January 1st, 2025

Published in

Wiley, ChemSusChem, 16(15), 2022

DOI: 10.1002/cssc.202200651

Links

Tools

Export citation

Search in Google Scholar

Scale‐Up of Solvent‐Free, Mechanochemical Precursor Synthesis for Nanoporous Carbon Materials via Extrusion

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe mechanochemical synthesis of nitrogen‐rich nanoporous carbon materials has been scaled up using an extruder. Lignin, urea, and K2CO3 were extruded under heat and pressure to yield nanoporous carbons with up to 3500 m2 g−1 specific surface area after pyrolysis. The route was further broadened by applying different nitrogen sources as well as sawdust as a low‐cost renewable feedstock to receive carbons with a C/N ratio of up to 15 depending on nitrogen source and extrusion parameters. The texture of obtained carbons was investigated by scanning electron microscopy as well as argon and nitrogen physisorption, while the chemical structure was analyzed by X‐ray photoelectron spectroscopy. The received carbon was tested as a supercapacitor electrode, showing comparable performance to similar ball‐mill‐synthesized materials. Lastly, the space‐time yield was applied to justify the use of a continuous reactor versus the ball mill.