Published in

Elsevier, Biochemical and Biophysical Research Communications, 1(415), p. 11-16, 2011

DOI: 10.1016/j.bbrc.2011.09.138

Links

Tools

Export citation

Search in Google Scholar

The homeobox leucine zipper gene Homez plays a role in Xenopus laevis neurogenesis.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Homez gene encodes a protein with three atypical homeodomains and two leucine zipper motifs of unknown function. Here we show that during neurula stages, Xenopus Homez is broadly expressed throughout the neural plate, the strongest expression being detected in the domains where primary neurons arise. At later stages, Homez is maintained throughout the central nervous system in differentiating progenitors. In accordance with this expression, Homez is positively regulated by neural inducers and by Ngnr1 and negatively by Notch signaling. Interference with Homez function in embryos by injection of an antisense morpholino oligonucleotide results in the specific disruption of the expression of late neuronal markers, without affecting the expression of earlier neuronal and early neurectodermal markers. Consistent with this finding, Homez inhibition also interferes with the expression of late neuronal markers in Ngnr1 overexpressing animal cap explants and in Notch inhibited embryos. In gain of function experiments, Homez inhibits the expression of late neuronal markers but has no effect on earlier ones. These data suggest a role for Homez in neuronal development downstream of proneural/neurogenic genes. ; Journal Article ; Research Support, Non-U.S. Gov't ; info:eu-repo/semantics/published