Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 5(15), p. 1065, 2023

DOI: 10.3390/nu15051065

Links

Tools

Export citation

Search in Google Scholar

Peptidomic Characterization and Amino Acid Availability after Intake of Casein vs. a Casein Hydrolysate in a Pig Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is known that casein hydrolysis accelerates gastrointestinal transit in comparison to intact casein, although the effect of the protein hydrolysis on the composition of the digests is not fully understood. The aim of this work is to characterize, at the peptidome level, duodenal digests from pigs, as a model of human digestion, fed with micellar casein and a previously described casein hydrolysate. In addition, in parallel experiments, plasma amino acid levels were quantified. A slower transit of nitrogen to the duodenum was found when the animals received micellar casein. Duodenal digests from casein contained a wider range of peptide sizes and a higher number of peptides above five amino acids long in comparison with the digests from the hydrolysate. The peptide profile was markedly different, and although β-casomorphin-7 precursors were also found in hydrolysate samples, other opioid sequences were more abundant in the casein digests. Within the same substrate, the evolution of the peptide pattern at different time points showed minimal changes, suggesting that the protein degradation rate relies more on the gastrointestinal location than on digestion time. Higher plasma concentrations of methionine, valine, lysine and amino acid metabolites were found in animals fed with the hydrolysate at short times (<200 min). The duodenal peptide profiles were evaluated with discriminant analysis tools specific for peptidomics to identify sequence differences between both substrates that can be used for future human physiological and metabolic studies.