Published in

Wiley, Angewandte Chemie International Edition, 34(61), 2022

DOI: 10.1002/anie.202207532

Wiley, Angewandte Chemie, 34(134), 2022

DOI: 10.1002/ange.202207532

Links

Tools

Export citation

Search in Google Scholar

Versatile Synthesis of Multivalent Porphyrin–Peptide Conjugates by Direct Porphyrin Construction on Resin

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMultifunctional porphyrin–peptide conjugates with different propensities for self‐assembly into various supramolecular nanoarchitectures play important roles in advanced materials and biomedical research. However, preparing prefunctionalized core porphyrins by traditional low‐yielding statistical synthesis and purifying them after peptide ligation through many rounds of HPLC purification is tedious and unsustainable. Herein, we report a novel integrated solid‐phase synthetic protocol for the construction of porphyrin moieties from simple aldehydes and dipyrromethanes on resin‐bound peptides directly to form mono‐, cis/trans‐di‐, and trivalent porphyrin–peptide conjugates in a highly efficient and controllable manner; moreover, only single final‐stage HPLC purification of the products is needed. This efficient strategy enables the rapid, greener, and substrate‐controlled diversity‐oriented synthesis of multivalent porphyrin–(long) peptide conjugate libraries for multifarious biological and materials applications.