Published in

MDPI, Applied Sciences, 5(13), p. 2901, 2023

DOI: 10.3390/app13052901

Links

Tools

Export citation

Search in Google Scholar

Pulsed Thermography Dataset for Training Deep Learning Models

Journal article published in 2023 by Ziang Wei ORCID, Ahmad Osman, Bernd Valeske ORCID, Xavier Maldague ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pulsed thermography is an indispensable tool in the field of non-destructive evaluation. However, the data generated by this technique can be challenging to analyze and require expertise to interpret. With the rapid progress in deep learning, image segmentation has become a well-established area of research. This has motivated efforts to apply deep learning methods to non-destructive evaluation data processing, including pulsed thermography. Despite this trend, there has been a lack of public pulsed thermography datasets available for the evaluation of various spatial-temporal deep learning models for segmentation tasks. This paper aims to address this gap by presenting the PVC-Infrared dataset for deep learning. In addition, we evaluated the performance of popular deep-learning-based instance segmentation models on this dataset. Furthermore, we examined the effect of the number of frames and data transformations on the performance of these models. The results of this study suggest that appropriate preprocessing techniques can significantly reduce the size of the data while maintaining the performance of deep learning models, thereby speeding up the data processing process. This highlights the potential for using deep learning methods to make non-destructive evaluation data analysis more efficient and accessible to a wider range of practitioners.