Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Letters, 7(48), p. 1574, 2023

DOI: 10.1364/ol.485130

Links

Tools

Export citation

Search in Google Scholar

High-power supercontinuum lasers with a flat blue spectrum through pump modulation: a numerical study

Journal article published in 2023 by Rasmus Eilkaer Hansen, Asbjørn Meldgaard Moltke, Ole Bang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We numerically investigate high-power, modulational instability-based supercontinuum sources. Such sources have spectra that reach the infrared material absorption edge and as a result the spectrum has a strong narrow blue peak (dispersive wave group velocity matched to solitons at the infrared loss edge) followed by a significant dip in the neighboring longer-wavelength region. In a wide range of applications one prefers a broader and more flat blue part within a certain minimum and maximum power spectral density. From the perspective of fiber degradation it would be desirable to achieve this at reduced pump peak powers. We show that it is possible to improve the flatness by more than a factor of 3 by modulating the input peak power, although this comes at the expense of slightly higher relative intensity noise. Specifically, we consider a standard 6.6 W, 80 MHz supercontinuum source with a 455 nm blue edge, which uses 7 ps pump pulses. We then modulate its peak power to generate a pump pulse train having two and three different sub-pulses.