Published in

American Institute of Physics, Journal of Vacuum Science and Technology A, 2(41), p. 023003, 2023

DOI: 10.1116/6.0002381

Links

Tools

Export citation

Search in Google Scholar

Inert-gas ion scattering at grazing incidence on smooth and rough Si and SiO<sub>2</sub> surfaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Molecular dynamics simulations for the scattering of neon, argon, and xenon ions on silicon and silicon dioxide surfaces were performed at grazing incidence to examine how the angular distribution of reflected ions deviates from that of the ideal specular reflection, depending on the ion mass, incident angle, and surface material and its roughness. This study is motivated to understand how energetic ions interact with the sidewalls of high-aspect-ratio (HAR) channels when reactive ion etching (RIE) is used to form such HAR channels in semiconductor manufacturing. It is found that the higher the ion mass is, the less grazing the ion incident angle is, or the rougher the surface is, the larger the angular distribution of reflected ions becomes around the corresponding specular reflection angles. Quantitative information on such reflected ions can be used to predict the profile evolution of HAR channels in RIE processes.