Published in

Optica, Optics Express, 6(31), p. 10862, 2023

DOI: 10.1364/oe.485904

Links

Tools

Export citation

Search in Google Scholar

Compact, broadband, and low-loss power splitters using MZI based on Bézier bends

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We experimentally demonstrate wavelength-independent couplers (WICs) based on an asymmetric Mach-Zehnder interferometer (MZI) on a monolithic silicon-photonics platform in a commercial, 300-mm, CMOS foundry. We compare the performance of splitters based on MZIs consisting of circular and 3rd order (cubic) Bézier bends. A semi-analytical model is constructed in order to accurately calculate each device’s response based on their specific geometry. The model is successfully tested via 3D-FDTD simulations and experimental characterization. The obtained experimental results demonstrate uniform performance across different wafer sites for various target splitting ratios. We also confirm the superior performance of the Bézier bend-based structure, compared to the circular bend-based structure both in terms of insertion loss (0.14 dB), and performance consistency throughout different wafer dies. The maximum deviation of the optimal device’s splitting ratio is 0.6%, over a wavelength span of 100 nm. Moreover, the devices have a compact footprint of 36.3 × 3.8 μm2.