Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 5(24), p. 4729, 2023

DOI: 10.3390/ijms24054729

Links

Tools

Export citation

Search in Google Scholar

Spatially Formed Tenacious Nickel-Supported Bimetallic Catalysts for CO2 Methanation under Conventional and Induction Heating

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The paper introduces spatially stable Ni-supported bimetallic catalysts for CO2 methanation. The catalysts are a combination of sintered nickel mesh or wool fibers and nanometal particles, such as Au, Pd, Re, or Ru. The preparation involves the nickel wool or mesh forming and sintering into a stable shape and then impregnating them with metal nanoparticles generated by a silica matrix digestion method. This procedure can be scaled up for commercial use. The catalyst candidates were analyzed using SEM, XRD, and EDXRF and tested in a fixed-bed flow reactor. The best results were obtained with the Ru/Ni-wool combination, which yields nearly 100% conversion at 248 °C, with the onset of reaction at 186 °C. When we tested this catalyst under inductive heating, the highest conversion was observed already at 194 °C.