Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Antibiotics, 3(12), p. 483, 2023

DOI: 10.3390/antibiotics12030483

Links

Tools

Export citation

Search in Google Scholar

Insights into the Evolution of P. aeruginosa Antimicrobial Resistance in a Patient Undergoing Intensive Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Whole genome sequencing (WGS) provides insights into the evolution of antimicrobial resistance, an urgent global health threat. Using WGS, we observe evolutionary adaptation of a Pseudomonas aeruginosa strain within an immunocompromised patient undergoing antibiotic therapy. Two blood isolates (EA-86 and EA-87) from the patient evolved separate adaptations for antibiotic resistance, while sharing common adaptive mutations for host immune evasion. In EA-86, a silencing mutation in the antibiotic efflux pump repressor, NfxB, increased antibiotic resistance, while in EA-87, a similar mutation was seen in the antibiotic efflux pump repressor mexR. The number of genomic variants between the two isolates give a divergence time estimate of the order of 1000 generations. This time is sufficient for a bacterial lineage to have evolved an SNP in every position in the genome and been fixed if advantageous. This demonstrates the evolutionary adaptive power accessible to bacteria and the timescale for a brute-force functional survey of the SNP fitness landscape.