Published in

Nature Research, npj Clean Water, 1(6), 2023

DOI: 10.1038/s41545-023-00237-x

Links

Tools

Export citation

Search in Google Scholar

Tunable nanostructured stainless-steel coating for high-selective and high-permeable separation membranes for oil/water emulsions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThis paper demonstrates a stainless-steel (SS) nano-pyramid structure (diameter of ~20–50 nm and pore size of 156.1 nm) sputter-coated on mixed cellulose ester (MCE) membrane for the use in separation of oil/water emulsions. SS-coated MCE membrane presented a superhydrophilic, antifouling surface as well as underwater superoleophobicity. The coated membrane achieved excellent separation efficiency of >99% when applied to light oil-water emulsions with a range of viscosities and densities. The highest permeation flux measured was 1,555 L m−2 h−1 when applied to toluene-in-water emulsions. The membrane also presented outstanding recyclability, as evidenced by oil rejection rate retaining at >99% through four separation cycles. The coated membrane was also shown to work well under harsh conditions including salty water, extreme pH values (1–14), and high temperatures (60 °C). In addition, our fabrication route of SS-coated MCE employs low process temperature while being highly scalable, which is favorable for industrial-scale applications.