Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Mathematics, 5(11), p. 1241, 2023

DOI: 10.3390/math11051241

Links

Tools

Export citation

Search in Google Scholar

Validation of a Probabilistic Prediction Model for Patients with Type 1 Diabetes Using Compositional Data Analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Glycemia assessment in people with type 1 diabetes (T1D) has focused on the time spent in different glucose ranges. As this time reflects the relative contributions to the finite duration of a day, it should be treated as compositional data (CoDa) that can be applied to T1D data. Previous works presented a tool for the individual categorization of days and proposed a probabilistic transition model between categories, although validation has hitherto not been presented. In this study, we consider data from eight real adult patients with T1D obtained from continuous glucose monitoring (CGM) sensors and introduce a methodology based on compositional methods to validate the previously presented probability transition model. We conducted 5-fold cross-validation, with both the training and validation data being CoDa vectors, which requires developing new performance metrics. We design new accuracy and precision measures based on statistical error calculations. The results show that the precision for the entire model is higher than 95% in all patients. The use of a probabilistic transition model can help doctors and patients in diabetes treatment management and decision-making. Although the proposed method was tested with CoDa applied to T1D data obtained from CGM, the newly developed accuracy and precision measures apply to any other data or validation based on CoDa.