Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Physics of Plasmas, 3(30), p. 032702, 2023

DOI: 10.1063/5.0131180

Links

Tools

Export citation

Search in Google Scholar

Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In indirect-drive implosions, the final core hot spot energy and pressure and, hence, neutron yield attainable in 1D increase with increasing laser peak power and, hence, radiation drive temperature at the fixed capsule and Hohlraum size. We present simple analytic scalings validated by 1D simulations that quantify the improvement in performance and use this to explain existing data and simulation trends. Extrapolating to the 500 TW National Ignition Facility peak power limit in a low gas-fill 5.4 mm diameter Hohlraum based on existing high adiabat implosion data at 400 TW, 1.3 MJ and 1 × 1016 yield, we find that a 2–3 × 1017 yield (0.5–0.7 MJ) is plausible using only 1.8 MJ of laser energy. Based on existing data varying deuterium–tritium (DT) fuel thickness and dopant areal density, further improvements should be possible by increasing DT fuel areal density, and hence confinement time and yield amplification.