Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Algorithms, 3(16), p. 143, 2023

DOI: 10.3390/a16030143

Links

Tools

Export citation

Search in Google Scholar

Nearest Neighbours Graph Variational AutoEncoder

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Graphs are versatile structures for the representation of many real-world data. Deep Learning on graphs is currently able to solve a wide range of problems with excellent results. However, both the generation of graphs and the handling of large graphs still remain open challenges. This work aims to introduce techniques for generating large graphs and test the approach on a complex problem such as the calculation of dose distribution in oncological radiotherapy applications. To this end, we introduced a pooling technique (ReNN-Pool) capable of sampling nodes that are spatially uniform without computational requirements in both model training and inference. By construction, the ReNN-Pool also allows the definition of a symmetric un-pooling operation to recover the original dimensionality of the graphs. We also present a Variational AutoEncoder (VAE) for generating graphs, based on the defined pooling and un-pooling operations, which employs convolutional graph layers in both encoding and decoding phases. The performance of the model was tested on both the realistic use case of a cylindrical graph dataset for a radiotherapy application and the standard benchmark dataset sprite. Compared to other graph pooling techniques, ReNN-Pool proved to improve both performance and computational requirements.