Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 5(13), p. 3372, 2023

DOI: 10.3390/app13053372

Links

Tools

Export citation

Search in Google Scholar

On Pseudorandomness and Deep Learning: A Case Study

Journal article published in 2023 by Zahra Ebadi Ansaroudi ORCID, Rocco Zaccagnino ORCID, Paolo D’Arco ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pseudorandomness is a crucial property that the designers of cryptographic primitives aim to achieve. It is also a key requirement in the calls for proposals of new primitives, as in the case of block ciphers. Therefore, the assessment of the property is an important issue to deal with. Currently, an interesting research line is the understanding of how powerful machine learning methods are in distinguishing pseudorandom objects from truly random objects. Moving along such a research line, in this paper a deep learning-based pseudorandom distinguisher is developed and trained for two well-known lightweight ciphers, Speck and Simon. Specifically, the distinguisher exploits a convolutional Siamese network for distinguishing the outputs of these ciphers from random sequences. Experiments with different instances of Speck and Simon show that the proposed distinguisher highly able to distinguish between the two types of sequences, with an average accuracy of 99.5% for Speck and 99.6% for Simon. Hence, the proposed method could significantly impact the security of these cryptographic primitives and of the applications in which they are used.