Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 5(23), p. 3103-3117, 2023

DOI: 10.5194/acp-23-3103-2023

Links

Tools

Export citation

Search in Google Scholar

Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Water vapor measurements of midlatitude cirrus clouds, obtained by the WAter vapour Lidar Experiment in Space (WALES) lidar system during the Mid-Latitude Cirrus (ML-CIRRUS) airborne campaign, which took place in the spring of 2014 over central Europe and the NE Atlantic Ocean, are combined with model temperatures from the European Centre for Medium-Range Weather Forecasts (ECMWF) and analyzed. Our main focus is to derive the distribution and temporal evolution of humidity with respect to ice within cirrus clouds and in their adjacent cloud-free air. We find that 34.1 % of in-cloud data points are supersaturated with respect to ice. Supersaturation is also detected in 6.8 % of the cloud-free data points. When the probability density of the relative humidity over ice (RHi) is calculated with respect to temperature for the in-cloud data points from the ML-CIRRUS dataset, there are two peaks: one around 225 K and close to saturation, RHi = 100 %, and a second one at colder temperatures around 218 K in subsaturation, RHi = 79 %. These two regions seem to represent two cirrus cloud categories: in situ formed and liquid origin. Regarding their vertical structure, most clouds have higher supersaturations close to the cloud top and become subsaturated near the cloud bottom. Finally, we find that the vertical structure of RHi within the clouds is also indicative of their life stage. RHi skewness tends to go from positive to negative values as the cloud ages. RHi modes are close to saturation in young clouds, supersaturated in mature clouds and subsaturated in dissipating clouds.