Published in

Optica, Optics Express, 7(31), p. 11519, 2023

DOI: 10.1364/oe.485609

Links

Tools

Export citation

Search in Google Scholar

Straight and curved distributed Bragg reflector design for compact WDM filters

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Grating-assisted contra-directional couplers (CDCs) wavelength selective filters for wavelength division multiplexing (WDM) are designed and experimentally demonstrated. Two configuration setups are designed; a straight-distributed Bragg reflector (SDBR) and curved distributed Bragg reflector (CDBR). The devices are fabricated on a monolithic silicon photonics platform in a GlobalFoundries CMOS foundry. The sidelobe strength of the transmission spectrum is suppressed by controlling the energy exchange between the asymmetric waveguides of the CDC using grating and spacing apodization. The experimental characterization demonstrates a flat-top and low insertion loss (0.43 dB) spectrally stable performance (<0.7 nm spectral shift) across several different wafers. The devices have a compact footprint of only 130µm2/Ch (SDBR) and 3700µm2/Ch (CDBR).