Published in

MDPI, International Journal of Molecular Sciences, 6(24), p. 5330, 2023

DOI: 10.3390/ijms24065330

Links

Tools

Export citation

Search in Google Scholar

Thermochemistry, Tautomerism, and Thermal Stability of 5,7-Dinitrobenzotriazoles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nitro derivatives of benzotriazoles are safe energetic materials with remarkable thermal stability. In the present study, we report on the kinetics and mechanism of thermal decomposition for 5,7-dinitrobenzotriazole (DBT) and 4-amino-5,7-dinitrobenzotriazole (ADBT). The pressure differential scanning calorimetry was employed to study the decomposition kinetics of DBT experimentally because the measurements under atmospheric pressure are disturbed by competing evaporation. The thermolysis of DBT in the melt is described by a kinetic scheme with two global reactions. The first stage is a strong autocatalytic process that includes the first-order reaction (Ea1I = 173.9 ± 0.9 kJ mol−1, log(A1I/s−1) = 12.82 ± 0.09) and the catalytic reaction of the second order with Ea2I = 136.5 ± 0.8 kJ mol−1, log(A2I/s−1) = 11.04 ± 0.07. The experimental study was complemented by predictive quantum chemical calculations (DLPNO-CCSD(T)). The calculations reveal that the 1H tautomer is the most energetically preferable form for both DBT and ADBT. Theory suggests the same decomposition mechanisms for DBT and ADBT, with the most favorable channels being nitro-nitrite isomerization and C–NO2 bond cleavage. The former channel has lower activation barriers (267 and 276 kJ mol−1 for DBT and ADBT, respectively) and dominates at lower temperatures. At the same time, due to the higher preexponential factor, the radical bond cleavage, with reaction enthalpies of 298 and 320 kJ mol−1, dominates in the experimental temperature range for both DBT and ADBT. In line with the theoretical predictions of C–NO2 bond energies, ADBT is more thermally stable than DBT. We also determined a reliable and mutually consistent set of thermochemical values for DBT and ADBT by combining the theoretically calculated (W1-F12 multilevel procedure) gas-phase enthalpies of formation and experimentally measured sublimation enthalpies.