Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 6(24), p. 5425, 2023

DOI: 10.3390/ijms24065425

Links

Tools

Export citation

Search in Google Scholar

miRNAs in Uremic Cardiomyopathy: A Comprehensive Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Uremic Cardiomyopathy (UCM) is an irreversible cardiovascular complication that is highly pervasive among chronic kidney disease (CKD) patients, particularly in End-Stage Kidney Disease (ESKD) individuals undergoing chronic dialysis. Features of UCM are an abnormal myocardial fibrosis, an asymmetric ventricular hypertrophy with subsequent diastolic dysfunction and a complex and multifactorial pathogenesis where underlying biological mechanisms remain partly undefined. In this paper, we reviewed the key evidence available on the biological and clinical significance of micro-RNAs (miRNAs) in UCM. miRNAs are short, noncoding RNA molecules with regulatory functions that play a pivotal role in myriad basic cellular processes, such as cell growth and differentiation. Deranged miRNAs expression has already been observed in various diseases, and their capacity to modulate cardiac remodeling and fibrosis under either physiological or pathological conditions is well acknowledged. In the context of UCM, robust experimental evidence confirms a close involvement of some miRNAs in the key pathways that are known to trigger or worsen ventricular hypertrophy or fibrosis. Moreover, very preliminary findings may set the stage for therapeutic interventions targeting specific miRNAs for ameliorating heart damage. Finally, scant but promising clinical evidence may suggest a potential future application of circulating miRNAs as diagnostic or prognostic biomarkers for improving risk stratification in UCM as well.