Published in

MDPI, Biomedicines, 11(11), p. 3030, 2023

DOI: 10.3390/biomedicines11113030

Links

Tools

Export citation

Search in Google Scholar

Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Migraine has been considered a chronic neuronal-based pain disorder characterized by the presence of cortical hyperexcitability. The Contingent Negative Variation (CNV) is the most explored electrophysiological index in migraine. However, the findings show inconsistencies regarding its functional significance. To address this, we conducted a review in both adults and children with migraine without aura to gain a deeper understanding of it and to derive clinical implications. The literature search was conducted in the PubMed, SCOPUS and PsycINFO databases until September 2022m and 34 articles were retrieved and considered relevant for further analysis. The main results in adults showed higher CNV amplitudes (with no habituation) in migraine patients. Electrophysiological abnormalities, particularly focused on the early CNV subcomponent (eCNV), were especially prominent a few days before the onset of a migraine attack, normalizing during and after the attack. We also explored various modulatory factors, including pharmacological treatments—CNV amplitude was lower after the intake of drugs targeting neural hyperexcitability—and other factors such as psychological, hormonal or genetic/familial influences on CNV. Although similar patterns were found in children, the evidence is particularly scarce and less consistent, likely due to the brain’s maturation process during childhood. As the first review exploring the relationship between CNV and migraine, this study supports the role of the CNV as a potential neural marker for migraine pathophysiology and the prediction of pain attacks. The importance of further exploring the relationship between this neurophysiological index and childhood migraine is critical for identifying potential therapeutic targets for managing migraine symptoms during its development.