Published in

IOP Publishing, Journal of Physics D: Applied Physics, 15(56), p. 154002, 2023

DOI: 10.1088/1361-6463/acc040

Links

Tools

Export citation

Search in Google Scholar

Impact of thermal oxidation uniformity on 150 mm GaAs- and Ge-substrate VCSELs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Vertical cavity surface emitting laser (VCSEL) devices and arrays are increasingly important in meeting the demands of today’s wireless communication and sensing systems. Understanding the origin of non-uniform wet thermal oxidation across large-area VCSEL wafers is a crucial issue to ensure highly reliable, volume-manufactured oxide-confined VCSEL devices. As VCSEL wafer diameters approach 200 mm, germanium (Ge) is emerging as an alternative substrate solution. To this end, we investigate the uniformity of 940 nm-emitting VCSEL performance across 150 mm diameter GaAs- and Ge-substrates, comparing the oxidation method in each case. Nominally identical epitaxial structures are used to evaluate the strain induced wafer bow for each substrate type with Ge exhibiting a reduction of over 100 μm in the peak-to-valley distortion when compared with GaAs. This wafer bow is found to be the principal cause of centre-to-edge oxidation non-uniformity when utilising a conduction-heated chuck furnace, in comparison to a convection-heated tube furnace. Using on-wafer testing of threshold current, differential resistance, and emission wavelength, device performance is demonstrated for the first time across a 150 mm Ge wafer, and is shown to be comparable to performance on GaAs substrates, when the effects of oxidation uniformity are removed. These results provide evidence that there is a realistic path to manufacturing high yield VCSELs, over wafer diameters approaching those used in Si-photonics, via Ge substrates.