Published in

American Astronomical Society, Astrophysical Journal Letters, 2(952), p. L30, 2023

DOI: 10.3847/2041-8213/ace618

Links

Tools

Export citation

Search in Google Scholar

A Luminous Red Supergiant and Dusty Long-period Variable Progenitor for SN 2023ixf

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm ≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IR J and K s bands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness ( M K s = − 10.7 mag) and color (J − K s = 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature ( T eff = 3500 − 1400 + 800 K) and luminosity ( log L / L ⊙ = 5.1 ± 0.2 ). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass of M init = 17 ± 4 M . We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling at M ̇ ≈ 3 × 10 − 5 to 3 × 10−4 M yr−1 for an assumed wind velocity of v w = 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind.