Published in

American Meteorological Society, Journal of Atmospheric and Oceanic Technology, 2023

DOI: 10.1175/jtech-d-22-0128.1

Links

Tools

Export citation

Search in Google Scholar

Simulated Clear-Sky Water Vapor and Temperature Retrievals from PREFIRE Measurements

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The Polar Radiant Energy in the Far InfraRed Experiment (PREFIRE) mission will measure the Earth’s emission at wavelengths ranging from 3-54 µm. The pre-launch clear-sky retrieval algorithm, evaluated with simulated test data, indicates that PREFIRE measurements will be valuable for retrieving atmospheric water vapor and temperature profiles. Far infrared measurements provide unique retrieval information, indicated by the high ranking of select FIR channels as primary contributors to the total degrees of freedom for signal (DFS). In utilizing all the PREFIRE channels, the average total DFS of 4 test regions ranges from 1.90 - 4.71. The information content increases with higher column water vapor and in the presence of near surface temperature inversions. Using the DFS profiles for guidance, the retrieval concentrates information into 7 distinct layers to reduce the retrieval uncertainty per layer. Sensitivity tests indicate forward model error due to surface emissivity uncertainty results in about a 9% increase in column water vapor uncertainty. The clear-sky retrieval is sensitive to the presence of undetected ice clouds, especially those with optical depths larger than 0.2. Hence, in addition to a separate PREFIRE cloud mask, optimal estimation retrieval metrics are explored as possible indicators of cloudy scenes.