Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 47(33), 2023

DOI: 10.1002/adfm.202305894

Links

Tools

Export citation

Search in Google Scholar

C─N Coupling Enabled by N─N Bond Breaking for Electrochemical Urea Production

Journal article published in 2023 by Junxian Liu ORCID, Sean C. Smith, Yuantong Gu ORCID, Liangzhi Kou ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractUrea electrosynthesis under mild conditions has emerged as a promising alternative strategy to replace the harsh industrial HaberBosch process, which is however limited by sluggish CN coupling and low selectivity. Here, a novel mechanism based on the synergistic effect of NN bond cleavage and CN coupling for highly efficient urea production is proposed. It is found that dual vanadium atoms anchoring onto defective graphene (V2N6) can activate the adsorbed *N2, in which the stable N≡N bond can be gradually weakened until being broken after two protonation steps, with superior thermodynamic and kinetic feasibility. CO molecules can be easily adsorbed on the dissociated *NH, followed by an exothermic CN coupling to form the urea precursor *NHCONH with a low kinetic energy barrier of 0.20 eV. The dual‐atom V2N6 not only exhibits superior intrinsic activity for urea formation, with a limiting potential of −0.26 V, but also can significantly suppress the competitive N2 reduction and hydrogen evolution reactions. This study presents a new avenue for developing novel mechanisms and efficient catalysts for urea electrochemical synthesis.