Published in

MDPI, Catalysts, 3(12), p. 296, 2022

DOI: 10.3390/catal12030296

Links

Tools

Export citation

Search in Google Scholar

β-Arsenene Monolayer: A Promising Electrocatalyst for Anodic Chlorine Evolution Reaction

Journal article published in 2022 by Junxian Liu ORCID, Jack Jon Hinsch ORCID, Huajie Yin, Porun Liu ORCID, Huijun Zhao, Yun Wang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Materials innovation plays an essential role to address the increasing demands of gaseous chlorine from anodic chlorine evolution reaction (CER) in chlor-alkali electrolysis. In this study, two-dimensional (2D) semiconducting group-VA monolayers were theoretically screened for the electrochemical CER by means of the density functional theory (DFT) method. Our results reveal the monolayered β-arsenene has the ultralow thermodynamic overpotential of 0.068 V for CER, which is close to that of the commercial Ru/Ir-based dimensionally stable anode (DSA) of 0.08 V @ 10 mA cm−2 and 0.13 V from experiments and theory, respectively. The change of CER pathways via Cl* intermediate on 2D β-arsenene also efficiently suppresses the parasitical oxygen gas production because of a high theoretical oxygen evolution reaction (OER) overpotential of 1.95 V. Our findings may therefore expand the scope of the electrocatalysts design for CER by using emerging 2D materials.