Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 12(122), p. 121104, 2023

DOI: 10.1063/5.0134147

Links

Tools

Export citation

Search in Google Scholar

Stability of laser cavity-solitons for metrological applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Laser cavity-solitons can appear in systems comprised of a nonlinear microcavity nested within an amplifying fiber loop. These states are robust and self-emergent and constitute an attractive class of solitons that are highly suitable for microcomb generation. Here, we present a detailed study of the free-running stability properties of the carrier frequency and repetition rate of single solitons, which are the most suitable states for developing robust ultrafast and high repetition rate comb sources. We achieve free-running fractional stability on both optical carrier and repetition rate (i.e., 48.9 GHz) frequencies on the order of [Formula: see text] for a 1 s gate time. The repetition rate results compare well with the performance of state-of-the-art (externally driven) microcomb sources, and the carrier frequency stability is in the range of performance typical of modern free-running fiber lasers. Finally, we show that these quantities can be controlled by modulating the laser pump current and the cavity length, providing a path for active locking and long-term stabilization.