Published in

American Physiological Society, American Journal of Physiology - Gastrointestinal and Liver Physiology, 2023

DOI: 10.1152/ajpgi.00123.2022

Links

Tools

Export citation

Search in Google Scholar

Absence of gut microbiota impairs depletion of Paneth cells but not goblet cells in germ-free Atoh1<sup>lox/lox</sup> VilCreER<sup>T2</sup> mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mouse atonal homolog 1 (Math1/Atoh1) is a basic helix-loop-helix transcription factor important for the differentiation of secretory cells within the intestinal epithelium. The analysis of Paneth depletion efficiency upon Math1lox/loxVilCreERT2 ( Math1∆IEC) mice treatment with Tamoxifen in the presence or absence of intestinal microbiota, showed a failure on Paneth cell depletion in germ-free mice as compared to SPF mice. However, goblet cells were efficiently depleted in Math1∆IEC germ-free mice. The gene expression of Math1 was significantly reduced in the ileum of germ-free Math1∆IEC mice 5 days post tamoxifen injection as compared to germ-free control, but its protein expression was still detectable in the nuclei of epithelial cells in the crypts. Germ-free mice showed low proliferative ileal crypts as well as apoptotic cells that were mainly detected in the tip of the villus, consistent with a slow turnover rate of epithelial cells. Although Paneth cells were not depleted in germ-free Math1∆IEC mice for the first 7 weeks after the last tamoxifen injection - far already from the 5 days timelaps observed in SPF conditions- but an incomplete depletion of Paneth cells was observed 14 weeks after last tamoxifen injection. Colonization of germ-free mice restored the phenotype observed in SPF mice, highlighting the regulatory role of gut microbes in our model. We conclude that absence of intestinal microbiota in Math1∆IEC mice is associated with reduced epithelial cell renewal and delays the depletion of preexisting Paneth cells.