Published in

BioScientifica, Reproduction, 2023

DOI: 10.1530/rep-22-0486

Links

Tools

Export citation

Search in Google Scholar

Paradigm shift in frog sperm cryopreservation - reduced role for non-penetrating cryoprotectants

Journal article published in 2023 by Rose Upton ORCID, Simon Clulow ORCID, Kim Colyvas ORCID, Michael Mahony, John Clulow
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sperm cryopreservation protocols have been developed for an increasing number of amphibian species since the recognition of a global amphibian decline. Yet, the development of these protocols has neglected to elucidate the combined effect of penetrative (PCP) and non-penetrative cryoprotectants (NPCP) on the recovery of live, motile sperm. The two-factor hypothesis of cryoinjury recognises a trade-off between cooling cells slowly enough to allow osmotic dehydration and therefore avoid intracellular ice formation, but fast enough to minimise effects from increasing extracellular osmolality as the frozen fraction of the media increases during freezing. We tested the effect of two concentrations of a PCP (10 and 15% v/v dimethyl sulfoxide [Me2SO]) and two concentrations of a NPCP (1 and 10% w/v sucrose) in various combinations on sperm of six pelodryadid frogs. In all species, 15% v/v Me2SO with 1% w/v sucrose provided superior post-thaw recovery with high proportions of forward progressive motility, live cells and intact acrosomes (typically >50% for each). Theoretically, it has been suggested increased NPCP concentration should improve cell survival by increasing the rate and extent of cell dehydration. We suggest, however, that the elevated osmolality in the unfrozen water fraction when 10% sucrose is used may be causing damage to cells via excessive cell shrinkage and solute effects as proposed in the two-factor hypothesis of cryoinjury. We showed this response in sperm across a range of frog species, providing compelling evidence for this hypothesis. We suggest protocol development using the PCP/NPCP ratios demonstrated in our study will be broadly applicable to many amphibian species.